Subalgebra C13+2A11C15
116 out of 119
Computations done by the calculator project.

Subalgebra type: C13+2A11 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from C13+A11 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: C15

Elements Cartan subalgebra scaled to act by two by components: C13: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, (0, 0, -2, -2, -1): 2, A11: (0, 0, 0, 2, 1): 2, A11: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 27.
Negative simple generators: g24, g2, g19, g13, g5
Positive simple generators: g24, g2, g19, g13, g5
Cartan symmetric matrix: (11/20001/21100012000002000002)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (4200024200022000002000002)
Decomposition of ambient Lie algebra: V2ω5Vω4+ω5Vω1+ω5V2ω4Vω1+ω4V2ω1
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 6) ; the vectors are over the primal subalgebra.g25g20g13g17g9g5
weight2ω1ω1+ω42ω4ω1+ω5ω4+ω52ω5
Isotypic module decomposition over primal subalgebra (total 6 isotypic components).
Isotypical components + highest weightV2ω1 → (2, 0, 0, 0, 0)Vω1+ω4 → (1, 0, 0, 1, 0)V2ω4 → (0, 0, 0, 2, 0)Vω1+ω5 → (1, 0, 0, 0, 1)Vω4+ω5 → (0, 0, 0, 1, 1)V2ω5 → (0, 0, 0, 0, 2)
Module label W1W2W3W4W5W6
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
g25
g1
2g23
g6
2g21
g22
4g19
2g2
g24
4h5+8h4+8h3
4h2
2h54h44h34h22h1
4g2
8g19
2g24
4g22
4g21
4g6
8g23
4g1
8g25
g20
g7
g10
g3
g18
g16
g16
g18
g3
g10
g7
g20
Semisimple subalgebra component.
g13
h5+2h4
2g13
g17
g11
g14
g8
g15
g12
g12
g15
g8
g14
g11
g17
g9
g4
g4
g9
Semisimple subalgebra component.
g5
h5
2g5
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above2ω1
ω2
2ω1+2ω2
ω1ω2+ω3
ω1+ω3
ω1+ω2ω3
2ω2+2ω3
ω1+2ω2ω3
2ω1ω2
0
0
0
ω12ω2+ω3
2ω22ω3
2ω1+ω2
ω1ω2+ω3
ω1ω3
ω1+ω2ω3
2ω12ω2
ω2
2ω1
ω1+ω4
ω1+ω2+ω4
ω1ω4
ω2+ω3+ω4
ω1+ω2ω4
ω2ω3+ω4
ω2+ω3ω4
ω1ω2+ω4
ω2ω3ω4
ω1+ω4
ω1ω2ω4
ω1ω4
2ω4
0
2ω4
ω1+ω5
ω1+ω2+ω5
ω1ω5
ω2+ω3+ω5
ω1+ω2ω5
ω2ω3+ω5
ω2+ω3ω5
ω1ω2+ω5
ω2ω3ω5
ω1+ω5
ω1ω2ω5
ω1ω5
ω4+ω5
ω4+ω5
ω4ω5
ω4ω5
2ω5
0
2ω5
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ω1
ω2
2ω1+2ω2
ω1ω2+ω3
ω1+ω3
ω1+ω2ω3
2ω2+2ω3
ω1+2ω2ω3
2ω1ω2
0
0
0
ω12ω2+ω3
2ω22ω3
2ω1+ω2
ω1ω2+ω3
ω1ω3
ω1+ω2ω3
2ω12ω2
ω2
2ω1
ω1+ω4
ω1+ω2+ω4
ω1ω4
ω2+ω3+ω4
ω1+ω2ω4
ω2ω3+ω4
ω2+ω3ω4
ω1ω2+ω4
ω2ω3ω4
ω1+ω4
ω1ω2ω4
ω1ω4
2ω4
0
2ω4
ω1+ω5
ω1+ω2+ω5
ω1ω5
ω2+ω3+ω5
ω1+ω2ω5
ω2ω3+ω5
ω2+ω3ω5
ω1ω2+ω5
ω2ω3ω5
ω1+ω5
ω1ω2ω5
ω1ω5
ω4+ω5
ω4+ω5
ω4ω5
ω4ω5
2ω5
0
2ω5
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ω1Mω1ω2+ω3Mω2M2ω1ω2Mω1+ω2ω3M2ω2+2ω3Mω1+ω3Mω12ω2+ω3M2ω1+2ω23M0M2ω12ω2Mω1+2ω2ω3Mω1ω3M2ω22ω3Mω1ω2+ω3M2ω1+ω2Mω2Mω1+ω2ω3M2ω1Mω1+ω4Mω2+ω3+ω4Mω1+ω2+ω4Mω1ω2+ω4Mω2ω3+ω4Mω1+ω4Mω1ω4Mω2+ω3ω4Mω1+ω2ω4Mω1ω2ω4Mω2ω3ω4Mω1ω4M2ω4M0M2ω4Mω1+ω5Mω2+ω3+ω5Mω1+ω2+ω5Mω1ω2+ω5Mω2ω3+ω5Mω1+ω5Mω1ω5Mω2+ω3ω5Mω1+ω2ω5Mω1ω2ω5Mω2ω3ω5Mω1ω5Mω4+ω5Mω4+ω5Mω4ω5Mω4ω5M2ω5M0M2ω5
Isotypic characterM2ω1Mω1ω2+ω3Mω2M2ω1ω2Mω1+ω2ω3M2ω2+2ω3Mω1+ω3Mω12ω2+ω3M2ω1+2ω23M0M2ω12ω2Mω1+2ω2ω3Mω1ω3M2ω22ω3Mω1ω2+ω3M2ω1+ω2Mω2Mω1+ω2ω3M2ω1Mω1+ω4Mω2+ω3+ω4Mω1+ω2+ω4Mω1ω2+ω4Mω2ω3+ω4Mω1+ω4Mω1ω4Mω2+ω3ω4Mω1+ω2ω4Mω1ω2ω4Mω2ω3ω4Mω1ω4M2ω4M0M2ω4Mω1+ω5Mω2+ω3+ω5Mω1+ω2+ω5Mω1ω2+ω5Mω2ω3+ω5Mω1+ω5Mω1ω5Mω2+ω3ω5Mω1+ω2ω5Mω1ω2ω5Mω2ω3ω5Mω1ω5Mω4+ω5Mω4+ω5Mω4ω5Mω4ω5M2ω5M0M2ω5

Semisimple subalgebra: W_{1}+W_{3}+W_{6}
Centralizer extension: 0

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 367.50)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00): (250.00, 417.50)
1: (0.00, 1.00, 0.00, 0.00, 0.00): (250.00, 467.50)
2: (0.00, 0.00, 1.00, 0.00, 0.00): (250.00, 467.50)
3: (0.00, 0.00, 0.00, 1.00, 0.00): (200.00, 367.50)
4: (0.00, 0.00, 0.00, 0.00, 1.00): (200.00, 367.50)




Made total 618 arithmetic operations while solving the Serre relations polynomial system.