Highest vectors of representations (total 6) ; the vectors are over the primal subalgebra. | g25 | g20 | g13 | g17 | g9 | g5 |
weight | 2ω1 | ω1+ω4 | 2ω4 | ω1+ω5 | ω4+ω5 | 2ω5 |
Isotypical components + highest weight | V2ω1 → (2, 0, 0, 0, 0) | Vω1+ω4 → (1, 0, 0, 1, 0) | V2ω4 → (0, 0, 0, 2, 0) | Vω1+ω5 → (1, 0, 0, 0, 1) | Vω4+ω5 → (0, 0, 0, 1, 1) | V2ω5 → (0, 0, 0, 0, 2) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
|
| Semisimple subalgebra component.
|
|
| Semisimple subalgebra component.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 2ω1 ω2 −2ω1+2ω2 ω1−ω2+ω3 −ω1+ω3 ω1+ω2−ω3 −2ω2+2ω3 −ω1+2ω2−ω3 2ω1−ω2 0 0 0 ω1−2ω2+ω3 2ω2−2ω3 −2ω1+ω2 −ω1−ω2+ω3 ω1−ω3 −ω1+ω2−ω3 2ω1−2ω2 −ω2 −2ω1 | ω1+ω4 −ω1+ω2+ω4 ω1−ω4 −ω2+ω3+ω4 −ω1+ω2−ω4 ω2−ω3+ω4 −ω2+ω3−ω4 ω1−ω2+ω4 ω2−ω3−ω4 −ω1+ω4 ω1−ω2−ω4 −ω1−ω4 | 2ω4 0 −2ω4 | ω1+ω5 −ω1+ω2+ω5 ω1−ω5 −ω2+ω3+ω5 −ω1+ω2−ω5 ω2−ω3+ω5 −ω2+ω3−ω5 ω1−ω2+ω5 ω2−ω3−ω5 −ω1+ω5 ω1−ω2−ω5 −ω1−ω5 | ω4+ω5 −ω4+ω5 ω4−ω5 −ω4−ω5 | 2ω5 0 −2ω5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 2ω1 ω2 −2ω1+2ω2 ω1−ω2+ω3 −ω1+ω3 ω1+ω2−ω3 −2ω2+2ω3 −ω1+2ω2−ω3 2ω1−ω2 0 0 0 ω1−2ω2+ω3 2ω2−2ω3 −2ω1+ω2 −ω1−ω2+ω3 ω1−ω3 −ω1+ω2−ω3 2ω1−2ω2 −ω2 −2ω1 | ω1+ω4 −ω1+ω2+ω4 ω1−ω4 −ω2+ω3+ω4 −ω1+ω2−ω4 ω2−ω3+ω4 −ω2+ω3−ω4 ω1−ω2+ω4 ω2−ω3−ω4 −ω1+ω4 ω1−ω2−ω4 −ω1−ω4 | 2ω4 0 −2ω4 | ω1+ω5 −ω1+ω2+ω5 ω1−ω5 −ω2+ω3+ω5 −ω1+ω2−ω5 ω2−ω3+ω5 −ω2+ω3−ω5 ω1−ω2+ω5 ω2−ω3−ω5 −ω1+ω5 ω1−ω2−ω5 −ω1−ω5 | ω4+ω5 −ω4+ω5 ω4−ω5 −ω4−ω5 | 2ω5 0 −2ω5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M2ω1⊕Mω1−ω2+ω3⊕Mω2⊕M2ω1−ω2⊕Mω1+ω2−ω3⊕M−2ω2+2ω3⊕M−ω1+ω3⊕Mω1−2ω2+ω3⊕M−2ω1+2ω2⊕3M0⊕M2ω1−2ω2⊕M−ω1+2ω2−ω3⊕Mω1−ω3⊕M2ω2−2ω3⊕M−ω1−ω2+ω3⊕M−2ω1+ω2⊕M−ω2⊕M−ω1+ω2−ω3⊕M−2ω1 | Mω1+ω4⊕M−ω2+ω3+ω4⊕M−ω1+ω2+ω4⊕Mω1−ω2+ω4⊕Mω2−ω3+ω4⊕M−ω1+ω4⊕Mω1−ω4⊕M−ω2+ω3−ω4⊕M−ω1+ω2−ω4⊕Mω1−ω2−ω4⊕Mω2−ω3−ω4⊕M−ω1−ω4 | M2ω4⊕M0⊕M−2ω4 | Mω1+ω5⊕M−ω2+ω3+ω5⊕M−ω1+ω2+ω5⊕Mω1−ω2+ω5⊕Mω2−ω3+ω5⊕M−ω1+ω5⊕Mω1−ω5⊕M−ω2+ω3−ω5⊕M−ω1+ω2−ω5⊕Mω1−ω2−ω5⊕Mω2−ω3−ω5⊕M−ω1−ω5 | Mω4+ω5⊕M−ω4+ω5⊕Mω4−ω5⊕M−ω4−ω5 | M2ω5⊕M0⊕M−2ω5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M2ω1⊕Mω1−ω2+ω3⊕Mω2⊕M2ω1−ω2⊕Mω1+ω2−ω3⊕M−2ω2+2ω3⊕M−ω1+ω3⊕Mω1−2ω2+ω3⊕M−2ω1+2ω2⊕3M0⊕M2ω1−2ω2⊕M−ω1+2ω2−ω3⊕Mω1−ω3⊕M2ω2−2ω3⊕M−ω1−ω2+ω3⊕M−2ω1+ω2⊕M−ω2⊕M−ω1+ω2−ω3⊕M−2ω1 | Mω1+ω4⊕M−ω2+ω3+ω4⊕M−ω1+ω2+ω4⊕Mω1−ω2+ω4⊕Mω2−ω3+ω4⊕M−ω1+ω4⊕Mω1−ω4⊕M−ω2+ω3−ω4⊕M−ω1+ω2−ω4⊕Mω1−ω2−ω4⊕Mω2−ω3−ω4⊕M−ω1−ω4 | M2ω4⊕M0⊕M−2ω4 | Mω1+ω5⊕M−ω2+ω3+ω5⊕M−ω1+ω2+ω5⊕Mω1−ω2+ω5⊕Mω2−ω3+ω5⊕M−ω1+ω5⊕Mω1−ω5⊕M−ω2+ω3−ω5⊕M−ω1+ω2−ω5⊕Mω1−ω2−ω5⊕Mω2−ω3−ω5⊕M−ω1−ω5 | Mω4+ω5⊕M−ω4+ω5⊕Mω4−ω5⊕M−ω4−ω5 | M2ω5⊕M0⊕M−2ω5 |